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Abstract

The increasing complexity, heterogeneity, and rapid evolution of modern computer

architectures present obstacles for achieving high performance of scientific codes on

different machines. Empirical performance tuning is a viable approach to obtain high-

performing code variants based on their measured performance on the target machine.

In previous work, we formulated the search for the best code variant as a numerical

optimization problem. From a mathematical optimization standpoint, two classes of

algorithms are available to tackle this problem: global and local algorithms. In this

paper, we investigate the effectiveness of some global and local search algorithms for

empirical performance tuning. We present an experimental study of these algorithms

on a number of problems from the recently introduced SPAPT test suite. We show that

local search algorithms are particularly attractive for empirical performance tuning,

where finding high-preforming code variants in a short computation time is crucial.

1 Introduction

The rapid rate of innovations in computing architectures has widened the gap between the

theoretical peak and the achievable performance of scientific codes [1]. Often, scientific

application programmers address this issue by manually rewriting the code for the target

machine, but this approach is neither scalable nor portable. Empirical performance tuning

or automatic performance tuning (in short, autotuning) is a promising approach to address

the limitations of manual tuning. This approach consists of identifying relevant code opti-

mization techniques (such as loop unrolling, register tiling, and loop vectorization), assigning

a range of parameter values using hardware expertise and application-specific knowledge,

and then either enumerating or searching this parameter space to find the best-performing

parameter configuration for the given machine. Using this approach, several researchers

have achieved considerable success in tuning scientific kernels for both serial and multicore

processors [1, 5, 7, 8, 15, 17].

In large-scale empirical performance tuning, the computation time needed to enumerate

all parameter configurations in a large decision space is prohibitively expensive in practice.

Hence, effective search algorithms that examine a small subset of possible configurations are

required. There are two classes of algorithms: global and local search algorithms. Typically,

global algorithms can be characterized by their dynamic balance between exploration of the
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search space and exploitation of the accumulated search history. They are theoretically

guaranteed to find the globally best configuration at the expense of a long search time. In

practice, however, they are run until a user-defined stopping criterion is met. Examples

include branch and bound, simulated annealing, genetic algorithm, and particle swarm

optimization. In contrast, local search algorithms do not emphasize exploration and instead

repeatedly try to move from a current configuration to a nearby improving configuration.

Typically, the neighborhood of a given configuration is problem-specific and defined by the

user or algorithm. These algorithms terminate when a current configuration does not have

any improving neighbor and hence is locally optimal. Examples include the Nelder-Mead

simplex, orthogonal search, variable neighborhood search, and trust region methods. The

disadvantage of local search algorithms is that, depending on the search space and initial

configuration, they can terminate with a locally optimal configuration that performs much

worse than the globally optimal configuration.

Several global and local search algorithms have been deployed for empirical performance

tuning. Seymour et al. [13] performed an experimental comparison of several global (random

search, a genetic algorithm, simulated annealing, particle swarm) and local (Nelder-Mead

and orthogonal search) optimization algorithms. Similarly, Kisuki et al. [10] compared

random search, a genetic algorithm, and simulated annealing with pyramid search and

window search. In both these studies, the experimental results showed that the random

search was more effective than the other algorithms tested. This reason is that in the

tuning tasks considered, the number of high-performing parameter configurations is large

and hence it is easy to find one of them. Moreover, we suspect that the adopted local

search algorithms are less effective since they were not customized. While Norris et al.

[11] implemented the Nelder-Mead simplex method, simulated annealing, and a genetic

algorithm in the empirical performance tuning framework Orio, the authors did not conduct

an experimental comparison. A number of previous works deploy local search algorithms for

empirical performance tuning. Examples include orthogonal search in ATLAS [16], pattern

search in loop optimization [12], and a modified Nelder-Mead simplex algorithm in Active

Harmony [14, 15]. However, a comparison with global search algorithms was not available.

From the literature, it is not clear whether local search or global search is best suited for

the empirical performance tuning and, in particular, under what conditions one class may

be better than another.

In this paper, we focus on a setting where the available computation time for tuning

is highly limited. Our hypothesis is that appropriately modified local search algorithms

can find high-performing code variants in short computation times. This is based on the

rationale that the exploration component of global search algorithms is less beneficial in em-

pirical performance-tuning problems, where finding high-performing configurations in short

computation time is more important than finding the optimal configuration independent

of the computation time required. We conduct an experimental study of some global and

local search algorithms on a number of problems from the SPAPT test suite. We analyze

the impact of initial configuration from which a search algorithm starts, input size, and

search time constraints on the effectiveness of global and local search algorithms. The main
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contribution of the paper is the empirical evidence for the effectiveness of the local search

algorithms in the empirical performance tuning under short computation times.

2 Search as a mathematical optimization problem

In [2], we formulated the search for the best code variant as a numerical optimization prob-

lem. Search problems in empirical performance tuning are defined by a specific combination

of a kernel, an input size, a set of tunable decision parameters, a set of feasible parameter

values, and a default/initial configuration of these parameters for use by search algorithms.

When combined with a target machine and performance objective f (which we will assume

should be minimized), the search problem can be modeled as the mathematical optimization

problem:
min
xI

f(xI)

such that xIj ∈ {lj , · · · , uj}, j = 1, . . . , ni,
(1)

where xI is a vector with ni integer parameters and lj and uj are the lower and upper

bounds for the jth parameter, respectively. Details on modeling and formulating problems

such as (1) are given in [2]. We denote the collective feasible set for a given problem by

D, which is defined by the bound constraints. An example is loop unroll and jam, where

the values are positive and take integer values up to a maximum value. Thus, D is a

hyperrectangle containing |D| =
∏ni

j=1(uj − lj + 1) feasible configurations.

3 Search algorithms

In this section, we provide summarize the algorithms considered in our experimental study.

For global search algorithms, we consider random search, genetic algorithm, and simulated

annealing; for local search algorithms, we use the Nelder-Mead simplex method and a

surrogate-based search.

Random search is a simple global search shown to be effective on a number of perfor-

mance tuning tasks. The parameter configurations are sampled uniformly at random from

the feasible domain D without replacement. At iteration k, each x ∈ D not already sampled

has probability 1
|D|−k+1 of being selected as the point x(k). In the absence of other criteria,

the algorithm terminates after |D| iterations with the global minimum.

Genetic algorithms are among the most widely used global search algorithms. These

algorithms follow a common framework that consists of iteratively modifying a population

of configurations by applying a set of evolutionary operations such as reproduction, recom-

bination, and mutation. Several variants exist; the best one depends on the problem at

hand and the parameters of the algorithm. We use a genetic algorithm based on [4].

Simulated annealing is inspired by the physical process of annealing. The key algo-

rithmic component is an annealing schedule that slowly reduces the value of a temperature

parameter T so that the probability of accepting a worse configuration decreases as the

search progresses [9]. The mechanism of accepting worse configurations during the search
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helps the algorithm escape from bad local configurations encountered in the early stages of

the search.

The Nelder-Mead simplex method was originally developed to solve unconstrained

continuous optimization problems. It works with a simplex of n + 1 vertices, where n is

the number of paramters. At each iteration, the simplex moves away from less promising

regions of the search space using reflection, expansion, contraction, or shrink operators. We

use a Nelder-Mead simplex algorithm that is customized for empirical performance tuning

task; see [2] for implementation details.

Surrogate-based search is an algorithmic framework that uses inexpensive surrogates

to approximate the computationally expensive objective. For our experiments, we consider

a basic trust-region algorithm [6] that operates on discrete values. It starts by constructing

a quadratic surrogate function by evaluating a few configurations. At each iteration, a

configuration that minimizes the surrogate is evaluated, and the difference between the

true function value and the predicted surrogate value is used to check the quality of the

surrogate. When the surrogate is accurate enough, the trust region is expanded; otherwise,

the region is contracted and a promising neighbor of the current configuration is evaluated

to improve the surrogate.

4 Numerical experiments

We evaluate the algorithms on problems from the SPAPT test suite [3], a collection of

extensible and portable search problems in automatic performance tuning. These problems

are implemented in an annotation-based language that can be readily processed by Orio [11].

Originally, the SPAPT problems have integer and binary parameters (scalar replacement,

array copy, loop vectorization, and OpenMP) with both bound and algebraic constraints.

Since the focus of our study is on bound-constrained problems with integer parameters

only, we removed all algebraic constraints and binary parameters from the problems. The

numerical parameters include loop unroll/jamming ∈ [1,. . .,50], cache tiling ∈ [1, 2, 4, 8, 16,

32, 64, 128, 256, 512, 1024, 2048] (treated as [1,. . .,12]), and register tiling ∈ [1,. . .,32]. The

number of parameters ni ranges between 8 and 38 and the size of search space |D| ranges

between 5.31× 1010 and 1.24× 1053. Of 18 problems in the SPAPT test suite, we use only

12 because on 6 problems the algebraic constraints are required for the correctness of the

transformation.

Random search (RS), the genetic algorithm (GA), simulated annealing (SA), modified

Nelder-Mead simplex (mNM), and modified surrogate-based search (mSBS) were imple-

mented and run in MATLAB version 7.9.0.529 (R2009b). We adopted the default parameter

values for all the algorithms. Experiments are carried out on dedicated nodes of Fusion, a

320-node cluster at Argonne National Laboratory, comprising 2.6 GHz Intel Xeon processors

with 36 GB of RAM, under the stock Linux kernel version 2.6.18 provided by RedHat.

We considered the objective value f(x) at a parameter configuration x as the average

computation time over 10 generated code runs. Other objective functions can be adopted,

such as the median or minimum, see [3] for a discussion. For the initial configuration from
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(a) fdtd; |D| = 1.61× 1022 (b) gemver; |D| = 1.41× 1023

Figure 1: Best objective value obtained by each algorithm as a function of search time.

Each algorithm is allowed to perform 100 function evaluations. Markers are placed at every

20 evaluations.

which the algorithms start, we set each parameter to its lower bound. This corresponds to

a code variant without any transformation. We used 100 code evaluations as the stopping

criterion for each algorithm. Given a parameter configuration, a code evaluation consists

of code transformation, compilation, and execution. For the size of the search space that

we have, this corresponds to the evaluation of only 8.05 × 10−50% (|D|=1.24 × 1053) to

0.00000018% (|D|=5.31 × 1010) of the total configurations.

Figures 1(a) and 1(b) show the solution quality development of each algorithm over the

search time for the problems based on fdtd and gemver, respectively. On fdtd, we observe

that the two local search algorithms, mNM and mSBS, obtain high-quality configurations

in short computation time. They obtain speedups of 1.15 and 1.17, respectively. However,

the main advantage here comes from the time required for the algorithms to complete 100

code evaluations. RS and GA require longer search time (3000 and 5000 CPU-seconds,

respectively) because they spend more time exploring the domain and tend to be slower

than mNM and mSBS. Although the time required for SA to complete 100 code evaluations

is shorter than that required for mSBS, the quality of the configuration obtained by SA is

poor. The results are similar on gemver, where mNM and mSBS obtain speedups of 1.33

and 1.26, respectively, in short computation times. On 10 of 12 problems, we found that

the local search algorithms similarly outperformed the global search algorithms. On bicg,

GA found high-quality code variants in short computation times; and on correlation,

we cannot detect a significant difference between the results of the global and local search

algorithms.

Under the same computation budget of 100 code evaluations, we tested the behavior

of the algorithms on larger input sizes (the size of the arrays and matrices in the kernels)

by doubling the input size for each problem. Although the time to complete 100 code

evaluations and speedups of the final code variants are larger than those observed with

smaller input sizes, the trend in the behavior of the algorithms is similar: the local search

algorithms obtain high-performing code variants in short computation time. Out of 12

problems, on 9 problems the local search algorithms are better than the global search
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(a) gesummv; |D| = 5.31 × 1010 (b) jacobi; |D| = 5.31× 1010

Figure 2: Best objective value obtained by each algorithm as a function of search time.

Algorithms start from poor initial configurations (the upper bounds) and are allowed to

perform 100 function evaluations. Markers are placed at every 20 evaluations.

algorithms.

Figures 2(a) and 2(b) show the results when the starting point is set to the upper-bound

values. From the exploratory studies, we found that the initial configurations with lower-

bound values are reasonably good starting points and that those at the upper bounds are

extremely poor. mNM and SA tend to be sensitive to the starting point and obtain poor

results. The reason for the longer search times of these two algorithms is that the parameter

configurations closer to upper bound have longer transformation time and consequently

longer compile time. Whereas SA tries to escape from the nonpromising region, mNM

stagnates, spending most of the search time exploring the neighborhood of the current

configuration. mSBS obtains high-performing code variants with speedups of 4.7 and 3.6,

respectively. This algorithm was found to less sensitive than mNM or SA to the starting

point because it uses randomly sampled configurations within a larger initial neighborhood

to form the initial surrogate. GA uses the initial configuration only as an individual of

the population in the first iteration. Since RS is independent of the starting point, it

found better code variants than did mNM and SA in short computation times. The results

show that the poor starting points significantly reduce the effectiveness of the local search

algorithms. Out of 12, only on 6 problems the local search algorithms, in particular, mSBS,

outperformed the global search algorithms. We also used the center of the hyperrectangle

D as a starting point. The results observed are similar to those with lower bounds as in

Figure 1, local algorithms being better than the global algorithms despite a slightly worse

starting value than the lower bound.

Figures 3(a) and 3(b) illustrate the behavior of the algorithms using a slightly larger

computation budget (500 code evaluations) as the stopping criterion. The algorithms start

from initial configurations in which each parameter is set to its lower-bound value. On mm,

GA and SA obtain code variants that are better than mNM and mSBS; on lu, SA and GA

are better than mNM. The trend is similar on other problems. Global search algorithms

benefit from a larger number of iterations; only on 7 out of 12 problems do local search

algorithms dominate global search algorithms. Even on those 7 problems, the difference in
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(a) mm; |D| = 3.73 × 1011 (b) lu; |D| = 2.65 × 1012

Figure 3: Best objective value obtained by each algorithm as a function of search time.

Each algorithm is allowed to perform 500 function evaluations. Markers are placed at every

100 evaluations.

the speedups between global and local search algorithms is smaller than that observed with

100 evaluations. Although local search algorithms find high-quality code variants in short

times, they spend the search effort in exploring the neighborhood of a local configuration

to guarantee local optimality.

To further test that the exploration component is the major factor affecting the per-

formance of global search algorithms, we reduced their degree of exploration. Specifically,

for GA and SA, we reduced the values of the mutation parameter µ and starting tem-

perature parameter T , respectively. We used three GAs: GA-I (default µ = 0.5), GA-II

(µ = 0.1), and GA-III (µ = 0.001). Similarly for SA, we used SA-I (default T = 1.0), SA-II

(T = 0.1), and SA-III (T = 0.001), respectively. Note that the choice of these values is

arbitrary and intended for illustration purposes only. Figures 4(a) and 4(b) illustrate the

results of the algorithms on atax under 100 code evaluations. The default lower-bound

configuration is used as a starting point. The results of our study show that reducing the

exploration in global search algorithms is beneficial but the appropriate reduction depends

on the algorithm characteristics, the problem, and the starting point. GA-I and GA-II

obtain configurations with similar runtime, but the latter obtains this configuration in a

shorter period of time (1200 CPU-seconds). However, an extremely small degree of explo-

ration in GA-III leads to stagnation. In contrast, although slightly slower, SA-III obtains a

better configuration than do SA-I and SA-II. Our conjecture is that given a good starting

point, SA with a very low degree of exploration can be effective.

5 Conclusion and future work

We investigated the issue of global versus local search in empirical performance tuning un-

der short computation times. We tested illustrative global and local algorithms on bound-

constrained search problems with integer parameters in short computation time. We used

different initial configurations, input sizes, and stopping criteria. The results show that 1)

the exploration capabilities of global search algorithms are less useful, 2) given good initial
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(a) GAs on atax; |D| = 2.81× 1021 (b) SAs on atax; |D| = 2.81 × 1021

Figure 4: Best objective value obtained by each algorithm as a function of search time.

Each algorithm is allowed to perform 100 function evaluations. Markers are placed at every

20 evaluations.

configurations, local search algorithms can find high-performing code variants in short com-

putation time, and 3) poor initial configurations can significantly reduce the effectiveness

of both global and local search algorithms that are sensitive to the starting point. From the

results, we conclude that when the available tuning time is severely limited, carefully cus-

tomized local search algorithms are promising candidates for empirical performance tuning

problems that have integer parameters and bound constraints.

Our future work includes the following: 1) problem-specific techniques to handle binary

parameters and constraints for both global and local search algorithms, 2) effective restart

strategies for local search to escape from local configurations, 3) tuning of parallel scientific

codes, and 4) analysis of the impact of different target machines on various performance

objectives.
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